Index

CryptoZombies

  1. Lesson 1: CryptoZombies
    1. Chapter 2 Contracts
    2. Chapter 3: State Variables & Integers
    3. Chapter 4: Math Operations
    4. Chapter 5: Structs
    5. Chapter 6: Arrays
    6. Chapter 7: Function Declarations
    7. Chapter 8: Working With Structs and Arrays
    8. Chapter 9: Private / Public Functions
    9. Chapter 10: More on Functions
    10. Chapter 11: Keccak256 and Typecasting
    11. Chapter 12: Putting It Together
    12. Chapter 13: Events
    13. Chapter 14: Web3.js
  2. Lesson 2: Zombies Attack Their Victims
    1. Chapter 2: Mappings and Addresses
    2. Chapter 3: Msg.sender
    3. Chapter 4: Require
    4. Chapter 5: Inheritance
    5. Chapter 6: Import
    6. Chapter 7: Storage vs Memory
    7. Chapter 8: Zombie DNA
    8. Chapter 9: More on Function Visibility
    9. Chapter 10: What Do Zombies Eat?
    10. Chapter 11: Using an Interface
    11. Chapter 12: Handling Multiple Return Values
    12. Chapter 13: Bonus: Kitty Genes
    13. Chapter 14: Wrapping It Up
  3. Lesson 3: Advanced Solidity Concepts
    1. Chapter 2: Ownable Contracts
    2. Chapter 3: onlyOwner Function Modifier
    3. Chapter 4: Gas
    4. Chapter 5: Time Units
    5. Chapter 6: Zombie Cooldowns
    6. Chapter 7: Public Functions & Security
    7. Chapter 8: More on Function Modifiers
    8. Chapter 9: Zombie Modifiers
    9. Chapter 10: Saving Gas With 'View' Functions
    10. Chapter 11: Storage is Expensive
    11. Chapter 12: For Loops
    12. Chapter 13: Wrapping It Up
  4. Lesson 4: Zombie Battle System
    1. Chapter 1: Payable
    2. Chapter 2: Withdraws
    3. Chapter 3: Zombie Battles
    4. Chapter 4: Random Numbers
    5. Chapter 5: Zombie Fightin'
    6. Chapter 6: Refactoring Common Logic
    7. Chapter 7: More Refactoring
    8. Chapter 8: Back to Attack!
    9. Chapter 9: Zombie Wins and Losses
    10. Chapter 10: Zombie Victory πŸ˜„
    11. Chapter 11: Zombie Loss 😞
  5. Lesson 5: ERC721 & Crypto-Collectibles
    1. Chapter 1: Tokens on Ethereum
    2. Chapter 2: ERC721 Standard, Multiple Inheritance
    3. Chapter 3: balanceOf & ownerOf
    4. Chapter 4: Refactoring
    5. Chapter 5: ERC721: Transfer Logic
    6. Chapter 6: ERC721: Transfer Cont'd
    7. Chapter 7: ERC721: Approve
    8. Chapter 8: ERC721: Approve
    9. Chapter 9: Preventing Overflows
    10. Chapter 10: SafeMath Part 2
    11. Chapter 11: SafeMath Part 3
    12. Chapter 12: SafeMath Part 4
    13. Chapter 13: Comments
    14. Chapter 14: Wrapping It Up
  6. App Front-ends & Web3.js
    1. Chapter 1: Intro to Web3.js
    2. Chapter 2: Web3 Providers
    3. Chapter 3: Talking to Contracts
    4. Chapter 4: Calling Contract Functions
    5. Chapter 5: Metamask & Accounts
    6. Chapter 6: Displaying our Zombie Army
    7. Chapter 7: Sending Transactions
    8. Chapter 8: Calling Payable Functions
    9. Chapter 9: Subscribing to Events
    10. Chapter 10: Wrapping It Up

Chapter 11: Storage is Expensive


Chapter 11: Storage is Expensive


One of the more expensive operations in Solidity is using storage β€” particularly writes.
This is because every time you write or change a piece of data, it’s written permanently to the blockchain. Forever! Thousands of nodes across the world need to store that data on their hard drives, and this amount of data keeps growing over time as the blockchain grows. So there's a cost to doing that.
In order to keep costs down, you want to avoid writing data to storage except when absolutely necessary. Sometimes this involves seemingly inefficient programming logic β€” like rebuilding an array in memory every time a function is called instead of simply saving that array in a variable for quick lookups.
In most programming languages, looping over large data sets is expensive. But in Solidity, this is way cheaper than using storage if it's in an external view function, since view functions don't cost your users any gas. (And gas costs your users real money!).
We'll go over for loops in the next chapter, but first, let's go over how to declare arrays in memory.

Declaring arrays in memory


You can use the memory keyword with arrays to create a new array inside a function without needing to write anything to storage. The array will only exist until the end of the function call, and this is a lot cheaper gas-wise than updating an array in storage β€” free if it's a view function called externally.
Here's how to declare an array in memory:
function getArray() external pure returns(uint[]) {
  // Instantiate a new array in memory with a length of 3
  uint[] memory values = new uint[](3);
  // Add some values to it
  values.push(1);
  values.push(2);
  values.push(3);
  // Return the array
  return values;
}

This is a trivial example just to show you the syntax, but in the next chapter we'll look at combining this with for loops for real use-cases.
Note: memory arrays must be created with a length argument (in this example,
3). They currently cannot be resized like storage arrays can with array.push(), although this may be changed in a future version of Solidity.

Put it to the test


In our
getZombiesByOwner function, we want to return a uint[] array with all the zombies a particular user owns.
1. Declare a
uint[] memory variable called result

2. Set it equal to a new
uint array. The length of the array should be however many zombies this _owner owns, which we can look up from our mapping with: ownerZombieCount[_owner].

3. At the end of the function return
result. It's just an empty array right now, but in the next chapter we'll fill it in.


pragma solidity ^0.4.25;

import "./zombiefeeding.sol";

contract ZombieHelper is ZombieFeeding {

  modifier aboveLevel(uint _level, uint _zombieId) {
    require(zombies[_zombieId].level >= _level);
    _;
  }

  function changeName(uint _zombieId, string _newName) external aboveLevel(2, _zombieId) {
    require(msg.sender == zombieToOwner[_zombieId]);
    zombies[_zombieId].name = _newName;
  }

  function changeDna(uint _zombieId, uint _newDna) external aboveLevel(20, _zombieId) {
    require(msg.sender == zombieToOwner[_zombieId]);
    zombies[_zombieId].dna = _newDna;
  }

  function getZombiesByOwner(address _owner) external view returns(uint[]) {
    // Start here
    uint[] memory result = new uint[](ownerZombieCount[_owner]);
    return result;
  }

}