Index

Rust

  1. Guessing Game
  2. Common Programming Concepts
    1. Variables and Mutability
    2. Data Types
    3. Function
    4. Control Flow
  3. Understanding Ownership
    1. References and Borrowing
    2. The Slice Type
  4. Using Structs
    1. An Example Program Using Structs
    2. Method Syntax
  5. Enums and Pattern Matching
    1. The match Control Flow Operator
    2. Concise Control Flow with if let
  6. Managing Growing Projects with Packages, Crates, and Modules
    1. Defining Modules to Control Scope and Privacy
    2. Paths for Referring to an Item in the Module Tree
    3. Bringing Paths into Scope with the use Keyword
    4. Separating Modules into Different Files
  7. Common Collections
    1. Storing UTF-8 Encoded Text with Strings
    2. Storing Keys with Associated Values in Hash Maps
  8. Error Handling
    1. Unrecoverable Errors with panic!
    2. Recoverable Errors with Result
  9. Generic Types, Traits, and Lifetimes
    1. Traits: Defining Shared Behavior
    2. Generics Rust by Example
      1. Functions
      2. Implementation
  10. Writing Automated Tests
  11. Object Oriented Programming
  12. Adding dependancies
  13. Option Take
  14. RefCell
  15. mem
  16. Data Structure
    1. Linked List
    2. Binary search tree
    3. N-ary Sum tree
  17. Recipe
    1. Semi colon
    2. Calling rust from python
    3. Default
    4. Crytocurrency With rust
    5. Function chaining
    6. Question Mark Operator
    7. Tests with println
    8. lib and bin
    9. Append vector to hash map
    10. Random Number
    11. uuid4
    12. uwrap and option
  18. Blockchain with Rust
  19. Near Protocol
    1. Startup code
    2. Couter
    3. Status
    4. Avrit
  20. Actix-web

Defining Modules to Control Scope and Privacy

In this section, we’ll talk about modules and other parts of the module system, namely paths that allow you to name items; the use keyword that brings a path into scope; and the pub keyword to make items public. We’ll also discuss the as keyword, external packages, and the glob operator. For now, let’s focus on modules

Modules let us organize code within a crate into groups for readability and easy reuse. Modules also control the privacy of items, which is whether an item can be used by outside code (public) or is an internal implementation detail and not available for outside use (private)

As an example, let’s write a library crate that provides the functionality of a restaurant

In the restaurant industry, some parts of a restaurant are referred to as front of house and others as back of house. Front of house is where customers are; this is where hosts seat customers, servers take orders and payment, and bartenders make drinks. Back of house is where the chefs and cooks work in the kitchen, dishwashers clean up, and managers do administrative work.

Create a new library named restaurant by running cargo new --lib restaurant

Filename: src/lib.rs
mod front_of_house {
    mod hosting {
        fn add_to_waitlist() {}

        fn seat_at_table() {}
    }

    mod serving {
        fn take_order() {}

        fn serve_order() {}

        fn take_payment() {}
    }
}


images/883-1.png